Decomposition rank of subhomogeneous C ∗ -algebras

نویسنده

  • WILHELM WINTER
چکیده

We analyze the decomposition rank (a notion of covering dimension for nuclear C-algebras introduced by E. Kirchberg and the author) of subhomogeneous C-algebras. In particular we show that a subhomogeneous C-algebra has decomposition rank n if and only if it is recursive subhomogeneous of topological dimension n and that n is determined by the primitive ideal space. As an application, we use recent results of Q. Lin and N. C. Phillips to show the following: Let A be the crossed product C-algebra coming from a compact smooth manifold and a minimal diffeomorphism. Then the decomposition rank of A is dominated by the covering dimension of the underlying manifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Subhomogeneous C-algebras

We show that finitely generated subhomogeneous C∗-algebras have finite decomposition rank. As a consequence, any separable ASH C∗-algebra can be written as an inductive limit of subhomogeneous C∗-algebras each of which has finite decomposition rank. It then follows from work of H. Lin and of the second named author that the class of simple unital ASH algebras which have real rank zero and absor...

متن کامل

On the Classification of Simple Z-stable C-algebras with Real Rank Zero and Finite Decomposition Rank

We show that, if A is a separable simple unital C-algebra which absorbs the Jiang–Su algebra Z tensorially and which has real rank zero and finite decomposition rank, then A is tracially AF in the sense of Lin, without any restriction on the tracial state space. As a consequence, the Elliott conjecture is true for the class of C-algebras as above which, additionally, satisfy the Universal Coeff...

متن کامل

Finitely Generated Nilpotent Group C*-algebras Have Finite Nuclear Dimension

We show that group C*-algebras of finitely generated, nilpotent groups have finite nuclear dimension. It then follows, from a string of deep results, that the C*-algebra A generated by an irreducible representation of such a group has decomposition rank at most 3. If, in addition, A satisfies the universal coefficient theorem, another string of deep results shows it is classifiable by its Ellio...

متن کامل

20 01 Recursive Subhomogeneous Algebras

We introduce and characterize a particularly tractable class of unital type 1 C*-algebras with bounded dimension of irreducible representations. Algebras in this class are called recursive subhomogeneous algebras, and they have an inductive description (through iterated pullbacks) which allows one to carry over from algebras of the form C(X,Mn) many of the constructions relevant in the study of...

متن کامل

On the Classification of Simple Approximately Subhomogeneous C*-algebras Not Necessarily of Real Rank Zero

A classification is given of certain separable nuclear C*-algebras not necessarily of real rank zero, namely the class of simple C*-algebras which are inductive limits of continuous-trace C*-algebras whose building blocks have their spectrum homeomorphic to the interval [0, 1] or to a finite disjoint union of closed intervals. In particular, a classification of those stably AI algebras which ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008